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Ex 2.1 (Topological vector spaces induced by seminorms)
Let X be a vector space equipped with a family of seminorms (p;);c;. Define a topology 7 on
X by setting

Uer < VYzeU3TlCIfinite,e>0: B.y(x) CU

with B, () = {y € X : pi(x —y) < e Vi € Ip}. Show that this notion indeed defines a
topology on X and that (X, 7) becomes a topological vector space.

Solution 2.1 : We first show that 7 is a topology. Clearly (), X € 7. Next, let Uy,...,U, € T
and x € Ni_,U;. Then there exist finite sets Ij C I and ; > 0 such that B,, ;;(x) C Us. Set
£ =minj<;<,; > 0 and Iy = JJ, I}, so that I is finite. Then B, j,(z) C U; foralli=1,...,n
and therefore U = (N}, U; is open. Finally, let (Us)ses be an arbitrary family of elements in 7.
If z € UsES Us, fix s € S such that © € U,. By definition there exists ¢ > 0 and [y C [ finite
such that B, 1, () C Us C J,cq Us- Hence | J,.q Us € 7 and we conclude that 7 is a topology.

Next we show that the vector space operations are continuous. Let U C X be open and
x,y € X be such that x +y € U. We have to show that there exist open sets V,IW € 7
with x € V and y € W such that V + W C U. Since U € 7 there exists ¢ > 0 and Iy C [
finite such that B, j,(x +y) C U. We claim that V = B,y j,(x) and W = B,y ;,(y) satisfy
V 4+ W C B (z+y) CU. Indeed, for 2/ € V, v € W and i € I, we have

pi(e' +y —(x+y) <pi(a’ —2)+pi(y —y) <e.

Since a set of the form V' x W is open in the product topology on X x X, we conclude that the
addition is continuous. To treat the scalar multiplication, let U € 7 and Ax € U with A € R
and x € X. Then there exists ¢ > 0 and [, C [ finite such that B, j;(Az) C U. Consider
Bs(\) x By, () for some § > 0 to be determined, an open neighbourhood of (A, z) in R x X.
For any (u,y) € Bs(\) x By, (), any i € Iy we have

pilpy — Av) < pi(py — px) + pi(pr — Av) =|ulpi(y — ) + [ — Api(z)
<(6+ [A[)S + dpi(z)

If we choose § = min{1, £(1 + |A| + max;er, p;(x)) ™'} this is less that e, and so py € B. 1, (A\z)
as required.

Ex 2.2 (The weak topology on a Banach space as LCTVS)

Let (X, |- ||) be a Banach space (over R). Recall that the weak topology on X is the coarsest
topology such that all linear functionals f : X — R that are continuous with respect to the
norm convergence remain continuous. Show that X equipped with the weak topology becomes



a locally convex topological vector space.

Hint: Construct seminorms inducing the weak topology. A corollary of the Hahn—Banach Theorem
might be useful to separate points.

Solution 2.2 : For a linear functional f : X — R we define py : X — [0, 4+00) as ps(z) = | f(x)].
By linearity of f and the fact that |- | is a norm on R we deduce that

pr(Az) = [Af ()] = [A[f (@) = [Alps (),
pr(@+y) = [f(x) + FW)] < [f @)+ [fW)] = ps(x) + ps(y).

Hence p; defines a semi-norm on X [in the exam, such calculations can be summarized as “one
can prove that py is a semi-norm”]. Consider then 7, the topology induced by the seminorms
(pf)rex: ' and denote by o(X, X') the weak topology on X. First note that by the Hahn-Banach
Theorem (see Lecture 4 of the lecture notes), ps(z) = 0 for all f € X’ implies that x = 0. It
thus suffices to show that 7 = o(X, X’). Let U € 7. Then by definition for all z € U there
exists € > 0 and fi,..., f, € X’ such that

US(WyeX:prly—a) <ey =y e X: Ifily) = fil)| < &}

:ﬂ{y € X: fily) € Bo(fi(x))} = () £ (Be(fiw))).

i=1

Since the set B.(fi(z)) is open, the continuity of f; with respect to the weak topology implies
that the set on the right hand side is an intersection of finitely many sets in o (X, X’). It follows
that U is also open in the weak topology and therefore 7 C o(X, X'). Next, let V' € o(X, X’)
and r € V. By definition the weak topology is generated by the sets f~1(U) with U C R and
f € X’ open. Moreover, since any open set U C R is the union of open balls (intervals are
also considered as 1D-balls here), we can equivalently generate the weak topology by sets of
the form f~!(B.(z)) with z € R and f € X’ such that f~'({z}) # 0 and € > 0. Note that for
z € f71({z}) we can write

JUBA2)={yeX: fly) €BA2)} ={ye X : |f(y) — f(z)| <e} = By(x) e .

Hence (X, X’) C 7 which concludes the proof.

Ex 2.3 (L? spaces for 0 < p < 1)
Let (€, <7, ) be a measure space and let p € (0, 1). Define

Lp(u):{f:Q—>R:/Q]f]pdu<+oo},

o(f) = / P dp.

As usual, we identify the functions that are equal p-almost everywhere.

a) Prove that LP(u) is a vector space and that d(f,g) = p(f — g) is a translation-invariant
metric on LP(p).
Hint: For p € (0,1) the estimate (s + )P < sP 4¢P holds for all s,¢ >0

b) Show that the topology induced by d turns LP(u) into a TVS.

1. X' is a standard notation for the dual space.



¢) Assume that p is the Lebesgue measure on 2 = R. Show that for every § > 0

sup {p(f) : fe CO(Bg)} = 00,

where By = {f: p(f) < 0} and co(Bs) is the convex hull of Bj.

Hint: Consider for some A > 0 the functions g, = AX[;,n41) and certain convex combinations.

Solution 2.3 :

a) The inequality (s + )P < sP + P, valid for all s,¢ > 0, yields both that LP(u) is a vector
space and that p(f +g) < p(f) + p(g). Moreover, using the properties of the Lebesgue integral
we get

p(f) =0 <~ /Q|f|pd,u:O <~ |fIP =0 prae. <= f=0 pae..

Moreover, it obviously holds that for any ¢ € R, p(cf) = |c[Pp(f).
Employing these properties of p, we can check that

and

d(g, f) = p(g — f) = p(=1(f — 9))
=|=1Pp(f —g) =d(f,9)

so d is a metric. Finally

d(f +h,g+h)=p(f+h—g—h)=p(f—g) =d(f g),

so d is translation invariant.
b) Because LP(u) is a metric space with d, it suffices to work with sequences. Let p(f,, — f) — 0,
p(gn —g) — 0, and ¢, — ¢ in R. Then

and

d(cnfn, cf) = plenfn —cf)
< pleafa = enf) +plenf —cf ) = lealPp(fu = [) 4 len — c[Pp(f) = 0,
which shows that both addition and scalar multiplication are continuous.

c) Fix ¢ < ¢ and consider functions g, = (5’)1/1”)([”7”“), n € N, where xpnn41] denotes the
characteristic function of [n,n + 1]. Then

n+1
p(gn) = / "Xty do =0’ / dr =8 <9,
R n

SO g, € Bs for any n € N. Take

n

fu=" g € colBy).

k=1



Because f,, is positive and the functions g, and g, have disjoint supports when k # £/, we get
pifa) = / <Zn:lg’f)pdx = / Zn:i|gk|pdl' = 5/Zn:l =0nt? = 400
R N n R npP — np

as n — +o0 since p € (0,1).

Ex 2.4 (LCTVS with countable family of seminorms is metrizable)
Let X be a LCTVS with the topology defined by a countable family of seminorms (p,)nen-

a) Consider the function f(a) = a/(1+ a), a > 0. Show that

fla) < fla+b) < f(a) + f(b).

for all b > 0.
b) Show that
- — pn(flj _y)
d(z,y) = 27—

is a translation-invariant metric on X and the balls in this metric are balanced.

Hint: To demonstrate various properties of d it is convenient to prove instead the respective

properties of the function do(z) = > 00 ;27" Ifi’;g&), and use the identity d(z,y) = do(x — y).

c¢) Verify that the metric topology induced by d is the same as the topology defined by the
seminorms (py)n>1-

d) Show that

di(z,y) = Zmin {27, pu(z —y)}

is likewise a translation-invariant metric defining the same topology.

Solution 2.4 :
a) The first inequality follows since f(a) =1 —1/(1 +a) and 1/(1 + a) is decreasing. We use
this fact together with the formula f(a)/a = 1/(1+ a), for a > 0, to infer that

fla)fa = fla+b)/(a+b), [fb)/b= fla+b)/(a+b), ab>0.

Hence, altogether, f(a) + f(b) > f(a + b)(a + b)/(a + b). In the case when a or b is zero, the
desired estimate is trivial.
b) That

do(z) >0 and do(x)=0 <= =0

follows directly from the non-negativity of seminorms and their separation property. Because
do(z) =>_,27"f(pn(x)), where f is the function from part a), we obtain

d0<£€ —+ y) = iQ"M < iQn pn(x) +pn(y)

= el ty) T L) 4 pa()
2 ok 27" Pty = ) ol

The two above properties of dy yield that d is a metric (which is clearly translation invariant).



To show that d-balls are balanced, note that for all 0 < [A| <1

LY ZCONNR S
9—n — 2~ n < -n = dy(z).
Z 1+ [Alpa(z) nz::l 1/|>\|+pn _z:: 1+pn 1+ pa(2) o(e)
c) We denote B, := {x : do(z) < r}, an open d-ball centered at 0 with radius » > 0, and
By nsi={x:pp(x) <dk=1...,n} (n € N, § > 0), an open neighborhood of 0 generated
by the family of seminorms (px)7_;.

First fix n and ¢ > 0. For € € (0,1) we have

do(z) < e2™" = 2"“M <e2™ forall k<n
1+ pp(x)
M <g fork<n
1+ pi(x)

:pk(x)gli for k < n.
—€

Therefore choosing ¢ such that /(1 — ) < ¢ and setting r = 27" yields B, C B;__ns.

777777

k <n and so

n

do(x):22k1+pk +22k1+"’3 < Z2k+—<7‘

1 pr(z
Thus for n as above, B;

,,,,,

d) To show that d; is a translatlon—lnvariant metric, we can argue as done for d. In particular,
we only need to verify that

min{2™", p,(z + y)} < min{27", p,(2)} + min{27", p,(y)}-

Indeed, we first notice that min{27", p, (v + y)} < min{27",p,(x) + p,(y)}. Then, if p,(x) +
pn(y) < 27" we necessarily have p,(z) < 27" and p,(y) < 27", meaning that the claim above is
verified. If p,(z)+pn(y) > 27", we only need to verify that min{2~", p,(x)}+min{2™", p,(y)} >
27", But the worst possible case is when the minimum is achieved at p,(z) and p,(y), where
however we know that p,(z) + p,(y) > 27", thus proving the claim.

As before, let B, = {z : dy(z,0) < r} denote an open ball in d; metric, and By
neighborhood of 0 generated by the the seminorms py,.

First fix n and §. Note that if there exist k < n for which py(x) > 27% then d;(z,0) > 2% > 27",
Therefore, if we take r < min{27",J} and assume that = € B,, we get

n:s all open

.....

0) = Zpk(x) + Z min {27%, p(z)} <r <9

so it must follow that py(z) < § for all k < n. Thus = € By __,5.

Now fix > 0 and take n so large that 27" < r/2. For x such that py(x) < 6 :=27"r/2, for all
k <n, we get

n o n )
di(z,0) < Zpk(x)—i- Z min{Z_k7pk(:13)} < 222—”_}_2_” < r
k=1 k=n+1 k=1

Ex 2.5 (Two counterexamples)



a) A metric-vector space but not TVS
Consider the plane R? with the “Washington” metric
|lxt —y|| if z and y are colinear,
(z,y) = .
|lz]| + |ly|| otherwise.
Show that scalar multiplication is continuous, but addition is not even separately continuous
in this metric.

b) Balls in metrizable LCTVS may be non-convex
Consider C'(R) with a countable family of seminorms

pu(f) = sup{|f(2)| : & € [-n,n]}, n €N,

and an induced translation-invariant metric given by

o0

0 =3 T

Define
Flr) = max{0, 1~ |af},  g(x) = 100f(z ~2),  h(z) = 5 (7(2) + o(x),
and show that 1 50 1 50

Hence the ball B(0, 3) is not convex.
Remark: One can show that B(0,) is not convex for any 0 < r < 1.

Solution 2.5 :
a) Note that, roughly speaking, d(x,y) is the distance you must travel to get from x to y when
you are only allowed to move radially. The name refers to a street plan of Washington, D.C.

Consider x,, 42T hen, by the definition of d :

r=0= |z, =0

xr # 0 = x,,z are colinear from some point on and ||z, — z|| — 0,

where || - || is the standard Euclidean norm on R?.

First, let us check that scalar multiplication is continuous. To this end assume that r,, — r in R
and that z,, % z in R2. If # = 0, we know that |zn|| = 0, so necessarily ||r,z,| — 0. Therefore
d(rpxn, re) = ||rpx,]| — 0. If © # 0, the vectors x,, and z must become colinear from some
point on (together with ||z, — z|| — 0) so the vectors r,x, and rz are also colinear. Therefore,
for all n large enough, d(r,z,,rz) = ||rpz, —rz|| — 0 by the continuity of scalar multiplication
in the Euclidean norm.

To show that addition is not continuous, fix z # 0 and take any sequence (y,,) C R? such that
lynll = 0 (so d(yn,0) — 0) and whose elements are not colinear with z. Then we know that
T +y, and x are not colinear either and therefore d(z + y,, ) = ||z + y.|| + ||z]| — 2||z|| # 0.

b) For any ng € {0,1,2,...} and a > 0 consider the function

froa(®) = af(z —np)



where f(z) = max{0,1 — |z|}. Then Af,, 0 = fay.ra, for any A > 0, and

[e.9] o0

n\Jnog,a —n 1
d( fng,a;0) = 22_RL7)) - Z 2 = 9(nov1)—1 - 0(a)

n=1 1+ pn(fno,a n=noV1 1+a

where ng V 1 = max{ng, 1} and ¢(a) = a/(1 + a). To compute d(f,0) and d(g,0) note that
f=Jop and g = fa100.

Next, for 0 < a < b, let us consider the function

1

1
hap = §f0,a + §f2,b = foa/2 + fo)2-

Because a < b we get pi(hqap) = a/2 and p,,(hap) = b/2 for n > 2. Therefore

A(hos0) = 56(a/2) + 50(b/2).

Since h = hy 100 we can immediately obtain d(h, 0).
Note for the remark that B(0, %) is not convex that in a topological vector space, the closure
of a convex set is convex.



