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Ex 2.1 (Topological vector spaces induced by seminorms)
Let X be a vector space equipped with a family of seminorms (pi)i∈I . Define a topology τ on
X by setting

U ∈ τ ⇐⇒ ∀ x ∈ U ∃I0 ⊂ I finite , ε > 0 : Bε,I0(x) ⊂ U

with Bε,I0(x) = {y ∈ X : pi(x − y) < ε ∀i ∈ I0}. Show that this notion indeed defines a
topology on X and that (X, τ) becomes a topological vector space.

Solution 2.1 : We first show that τ is a topology. Clearly ∅, X ∈ τ . Next, let U1, . . . , Un ∈ τ
and x ∈ ∩n

i=1Ui. Then there exist finite sets I i0 ⊂ I and εi > 0 such that Bεi,Ii0
(x) ⊂ Ui. Set

ε = min1≤i≤n εi > 0 and I0 =
⋃n

i=1 I
i
0, so that I0 is finite. Then Bε,I0(x) ⊂ Ui for all i = 1, . . . , n

and therefore U =
⋂n

i=1 Ui is open. Finally, let (Us)s∈S be an arbitrary family of elements in τ .
If x ∈

⋃
s∈S Us, fix s ∈ S such that x ∈ Us. By definition there exists ε > 0 and I0 ⊂ I finite

such that Bε,I0(x) ⊂ Us ⊂
⋃

s∈S Us. Hence
⋃

s∈S Us ∈ τ and we conclude that τ is a topology.

Next we show that the vector space operations are continuous. Let U ⊂ X be open and
x, y ∈ X be such that x + y ∈ U . We have to show that there exist open sets V,W ∈ τ
with x ∈ V and y ∈ W such that V + W ⊂ U . Since U ∈ τ there exists ε > 0 and I0 ⊂ I
finite such that Bε,I0(x + y) ⊂ U . We claim that V = Bε/2,I0(x) and W = Bε/2,I0(y) satisfy
V +W ⊂ Bε,I0(x+ y) ⊂ U . Indeed, for x′ ∈ V , y′ ∈ W and i ∈ I0 we have

pi(x
′ + y′ − (x+ y)) ≤ pi(x

′ − x) + pi(y
′ − y) < ε.

Since a set of the form V ×W is open in the product topology on X×X, we conclude that the
addition is continuous. To treat the scalar multiplication, let U ∈ τ and λx ∈ U with λ ∈ R
and x ∈ X. Then there exists ε > 0 and I0 ⊂ I finite such that Bε,I0(λx) ⊂ U . Consider
Bδ(λ)× Bδ,I0(x) for some δ > 0 to be determined, an open neighbourhood of (λ, x) in R×X.
For any (µ, y) ∈ Bδ(λ)×Bδ,I0(x), any i ∈ I0 we have

pi(µy − λx) ≤ pi(µy − µx) + pi(µx− λx) =|µ|pi(y − x) + |µ− λ|pi(x)
≤(δ + |λ|)δ + δpi(x)

If we choose δ = min{1, ε
2
(1 + |λ|+maxi∈I0 pi(x))

−1} this is less that ε, and so µy ∈ Bε,I0(λx)
as required.

Ex 2.2 (The weak topology on a Banach space as LCTVS)
Let (X, ∥ · ∥) be a Banach space (over R). Recall that the weak topology on X is the coarsest
topology such that all linear functionals f : X → R that are continuous with respect to the
norm convergence remain continuous. Show that X equipped with the weak topology becomes



a locally convex topological vector space.

Hint: Construct seminorms inducing the weak topology. A corollary of the Hahn–Banach Theorem

might be useful to separate points.

Solution 2.2 : For a linear functional f : X → R we define pf : X → [0,+∞) as pf (x) = |f(x)|.
By linearity of f and the fact that | · | is a norm on R we deduce that

pf (λx) = |λf(x)| = |λ||f(x)| = |λ|pf (x),
pf (x+ y) = |f(x) + f(y)| ≤ |f(x)|+ |f(y)| = pf (x) + pf (y).

Hence pf defines a semi-norm on X [in the exam, such calculations can be summarized as “one
can prove that pf is a semi-norm”]. Consider then τ , the topology induced by the seminorms
(pf )f∈X′ 1 and denote by σ(X,X ′) the weak topology on X. First note that by the Hahn-Banach
Theorem (see Lecture 4 of the lecture notes), pf (x) = 0 for all f ∈ X ′ implies that x = 0. It
thus suffices to show that τ = σ(X,X ′). Let U ∈ τ . Then by definition for all x ∈ U there
exists ε > 0 and f1, . . . , fn ∈ X ′ such that

U ⊃
n⋂

i=1

{y ∈ X : pfi(y − x) < ε} =
n⋂

i=1

{y ∈ X : |fi(y)− fi(x)| < ε}

=
n⋂

i=1

{y ∈ X : fi(y) ∈ Bε(fi(x))} =
n⋂

i=1

f−1
i (Bε(fi(x))).

Since the set Bε(fi(x)) is open, the continuity of fi with respect to the weak topology implies
that the set on the right hand side is an intersection of finitely many sets in σ(X,X ′). It follows
that U is also open in the weak topology and therefore τ ⊂ σ(X,X ′). Next, let V ∈ σ(X,X ′)
and x ∈ V . By definition the weak topology is generated by the sets f−1(U) with U ⊂ R and
f ∈ X ′ open. Moreover, since any open set U ⊂ R is the union of open balls (intervals are
also considered as 1D-balls here), we can equivalently generate the weak topology by sets of
the form f−1(Bε(z)) with z ∈ R and f ∈ X ′ such that f−1({z}) ̸= ∅ and ε > 0. Note that for
x ∈ f−1({z}) we can write

f−1(Bε(z)) = {y ∈ X : f(y) ∈ Bε(z)} = {y ∈ X : |f(y)− f(x)| < ε} = Bε,f (x) ∈ τ.

Hence σ(X,X ′) ⊂ τ which concludes the proof.

Ex 2.3 (Lp spaces for 0 < p < 1)
Let (Ω,A , µ) be a measure space and let p ∈ (0, 1). Define

Lp(µ) =
{
f : Ω → R :

∫
Ω

|f |p dµ < +∞
}
,

ρ(f) =

∫
Ω

|f |p dµ.

As usual, we identify the functions that are equal µ-almost everywhere.

a) Prove that Lp(µ) is a vector space and that d(f, g) = ρ(f − g) is a translation-invariant
metric on Lp(µ).
Hint: For p ∈ (0, 1) the estimate (s+ t)p ≤ sp + tp holds for all s, t ≥ 0

b) Show that the topology induced by d turns Lp(µ) into a TVS.

1. X ′ is a standard notation for the dual space.



c) Assume that µ is the Lebesgue measure on Ω = R. Show that for every δ > 0

sup
{
ρ(f) : f ∈ co(Bδ)

}
= +∞,

where Bδ = {f : ρ(f) < δ} and co(Bδ) is the convex hull of Bδ.
Hint: Consider for some λ > 0 the functions gn = λχ[n,n+1) and certain convex combinations.

Solution 2.3 :
a) The inequality (s + t)p ≤ sp + tp, valid for all s, t ≥ 0, yields both that Lp(µ) is a vector
space and that ρ(f + g) ≤ ρ(f) + ρ(g). Moreover, using the properties of the Lebesgue integral
we get

ρ(f) = 0 ⇐⇒
∫
Ω

|f |p dµ = 0 ⇐⇒ |f |p = 0 µ-a.e. ⇐⇒ f = 0 µ-a.e..

Moreover, it obviously holds that for any c ∈ R, ρ(cf) = |c|pρ(f).

Employing these properties of ρ, we can check that

d(f, g) = ρ(f − g) = ρ(f − h+ h− g)

≤ ρ(f − h) + ρ(h− g)

= d(f, h) + d(h, g)

and

d(g, f) = ρ(g − f) = ρ(−1(f − g))

= | − 1|pρ(f − g) = d(f, g)

so d is a metric. Finally

d(f + h, g + h) = ρ(f + h− g − h) = ρ(f − g) = d(f, g),

so d is translation invariant.
b) Because Lp(µ) is a metric space with d, it suffices to work with sequences. Let ρ(fn−f) → 0,
ρ(gn − g) → 0, and cn → c in R. Then

d(fn + gn, f + g) = ρ(fn − f + gn − g) ≤ ρ(fn − f) + ρ(gn − g) → 0 (1)

and

d(cnfn, cf) = ρ(cnfn − cf)

≤ ρ(cnfn − cnf) + ρ(cnf − cf) = |cn|pρ(fn − f) + |cn − c|pρ(f) → 0,

which shows that both addition and scalar multiplication are continuous.
c) Fix δ′ < δ and consider functions gn = (δ′)1/pχ[n,n+1), n ∈ N, where χ[n,n+1] denotes the
characteristic function of [n, n+ 1]. Then

ρ(gn) =

∫
R
δ′χ[n,n+1) dx = δ′

∫ n+1

n

dx = δ′ < δ,

so gn ∈ Bδ for any n ∈ N. Take

fn =
n∑

k=1

1

n
gk ∈ co(Bδ).



Because fn is positive and the functions gk and gk′ have disjoint supports when k ̸= k′, we get

ρ(fn) =

∫
R

( n∑
k=1

1

n
gk

)p

dx =

∫
R

n∑
k=1

1

np
|gk|p dx = δ′

n∑
k=1

1

np
= δ′n1−p → +∞

as n → +∞ since p ∈ (0, 1).

Ex 2.4 (LCTVS with countable family of seminorms is metrizable)
Let X be a LCTVS with the topology defined by a countable family of seminorms (pn)n∈N.

a) Consider the function f(a) = a/(1 + a), a ≥ 0. Show that

f(a) ≤ f(a+ b) ≤ f(a) + f(b).

for all b ≥ 0.

b) Show that

d(x, y) =
∞∑
n=1

2−n pn(x− y)

1 + pn(x− y)

is a translation-invariant metric on X and the balls in this metric are balanced.

Hint: To demonstrate various properties of d it is convenient to prove instead the respective

properties of the function d0(x) =
∑∞

n=1 2
−n pn(x)

1+pn(x)
, and use the identity d(x, y) = d0(x− y).

c) Verify that the metric topology induced by d is the same as the topology defined by the
seminorms (pn)n≥1.

d) Show that

d1(x, y) =
∞∑
n=1

min
{
2−n, pn(x− y)

}
is likewise a translation-invariant metric defining the same topology.

Solution 2.4 :
a) The first inequality follows since f(a) = 1 − 1/(1 + a) and 1/(1 + a) is decreasing. We use
this fact together with the formula f(a)/a = 1/(1 + a), for a > 0, to infer that

f(a)/a ≥ f(a+ b)/(a+ b), f(b)/b ≥ f(a+ b)/(a+ b), a, b > 0.

Hence, altogether, f(a) + f(b) ≥ f(a + b)(a + b)/(a + b). In the case when a or b is zero, the
desired estimate is trivial.
b) That

d0(x) ≥ 0 and d0(x) = 0 ⇐⇒ x = 0

follows directly from the non-negativity of seminorms and their separation property. Because
d0(x) =

∑
n 2

−nf(pn(x)), where f is the function from part a), we obtain

d0(x+ y) =
∞∑
n=1

2−n pn(x+ y)

1 + pn(x+ y)
≤

∞∑
n=1

2−n pn(x) + pn(y)

1 + pn(x) + pn(y)

≤
∞∑
n=1

2−n pn(x)

1 + pn(x)
+

∞∑
n=1

2−n pn(y)

1 + pn(y)
= d0(x) + d0(y)

The two above properties of d0 yield that d is a metric (which is clearly translation invariant).



To show that d-balls are balanced, note that for all 0 < |λ| ≤ 1

d0(λx) =
∞∑
n=1

2−n |λ|pn(x)
1 + |λ|pn(x)

=
∞∑
n=1

2−n pn(x)

1/|λ|+ pn(x)
≤

∞∑
n=1

2−n pn(x)

1 + pn(x)
= d0(x).

c) We denote Br := {x : d0(x) < r}, an open d-ball centered at 0 with radius r > 0, and
B1,...,n;δ := {x : pk(x) < δ, k = 1, . . . , n} (n ∈ N, δ > 0), an open neighborhood of 0 generated
by the family of seminorms (pk)

n
k=1.

First fix n and δ > 0. For ε ∈ (0, 1) we have

d0(x) < ε2−n ⇒ 2−k pk(x)

1 + pk(x)
≤ ε2−n for all k ≤ n

⇒ pk(x)

1 + pk(x)
≤ ε for k ≤ n

⇒ pk(x) ≤
ε

1− ε
for k ≤ n.

Therefore choosing ε such that ε/(1− ε) < δ and setting r = ε2−n yields Br ⊂ B1,...,n;δ.
Now fix r > 0 and n such that 2−n < r/2. Then for x ∈ B1,...,n;r/2 we have pk(x) < r/2 for all
k ≤ n and so

d0(x) =
n∑

k=1

2−k pk(x)

1 + pk(x)
+

∞∑
k=n+1

2−k pk(x)

1 + pk(x)
<

r

2

n∑
k=1

2−k +
1

2n
< r

Thus for n as above, B1,...,n;r/2 ⊂ Br.

d) To show that d1 is a translation-invariant metric, we can argue as done for d. In particular,
we only need to verify that

min{2−n, pn(x+ y)} ≤ min{2−n, pn(x)}+min{2−n, pn(y)}.

Indeed, we first notice that min{2−n, pn(x + y)} ≤ min{2−n, pn(x) + pn(y)}. Then, if pn(x) +
pn(y) ≤ 2−n we necessarily have pn(x) ≤ 2−n and pn(y) ≤ 2−n, meaning that the claim above is
verified. If pn(x)+pn(y) > 2−n, we only need to verify that min{2−n, pn(x)}+min{2−n, pn(y)} ≥
2−n. But the worst possible case is when the minimum is achieved at pn(x) and pn(y), where
however we know that pn(x) + pn(y) > 2−n, thus proving the claim.
As before, let Br = {x : d1(x, 0) < r} denote an open ball in d1 metric, and B1,...,n;δ an open
neighborhood of 0 generated by the the seminorms pk.

First fix n and δ. Note that if there exist k ≤ n for which pk(x) > 2−k then d1(x, 0) ≥ 2−k ≥ 2−n.
Therefore, if we take r < min{2−n, δ} and assume that x ∈ Br, we get

d1(x, 0) =
n∑

k=1

pk(x) +
∞∑

k=n+1

min
{
2−k, pk(x)

}
< r < δ

so it must follow that pk(x) < δ for all k ≤ n. Thus x ∈ B1,...,n;δ.

Now fix r > 0 and take n so large that 2−n < r/2. For x such that pk(x) < δ := 2−nr/2, for all
k ≤ n, we get

d1(x, 0) ≤
n∑

k=1

pk(x) +
∞∑

k=n+1

min
{
2−k, pk(x)

}
<

r

2

n∑
k=1

2−n +
1

2n
< r.

Ex 2.5 (Two counterexamples)



a) A metric-vector space but not TVS

Consider the plane R2 with the “Washington” metric

d(x, y) =

{
∥x− y∥ if x and y are colinear,

∥x∥+ ∥y∥ otherwise.

Show that scalar multiplication is continuous, but addition is not even separately continuous
in this metric.

b) Balls in metrizable LCTVS may be non-convex

Consider C(R) with a countable family of seminorms

pn(f) = sup{|f(x)| : x ∈ [−n, n]}, n ∈ N,

and an induced translation-invariant metric given by

d(f, g) =
∞∑
n=1

2−n pn(f − g)

1 + pn(f − g)
.

Define

f(x) = max{0, 1− |x|}, g(x) = 100f(x− 2), h(x) =
1

2

(
f(x) + g(x)

)
,

and show that

d(f, 0) =
1

2
, d(g, 0) =

50

101
, d(h, 0) =

1

6
+

50

102
.

Hence the ball B(0, 1
2
) is not convex.

Remark: One can show that B(0, r) is not convex for any 0 < r < 1.

Solution 2.5 :
a) Note that, roughly speaking, d(x, y) is the distance you must travel to get from x to y when
you are only allowed to move radially. The name refers to a street plan of Washington, D.C.

Consider xn
d→ x. Then, by the definition of d :

x = 0 ⇒ ∥xn∥ → 0

x ̸= 0 ⇒ xn, x are colinear from some point on and ∥xn − x∥ → 0,

where ∥ · ∥ is the standard Euclidean norm on R2.

First, let us check that scalar multiplication is continuous. To this end assume that rn → r in R
and that xn

d→ x in R2. If x = 0, we know that ∥xn∥ → 0, so necessarily ∥rnxn∥ → 0. Therefore
d(rnxn, rx) = ∥rnxn∥ → 0. If x ̸= 0, the vectors xn and x must become colinear from some
point on (together with ∥xn − x∥ → 0) so the vectors rnxn and rx are also colinear. Therefore,
for all n large enough, d(rnxn, rx) = ∥rnxn− rx∥ → 0 by the continuity of scalar multiplication
in the Euclidean norm.

To show that addition is not continuous, fix x ̸= 0 and take any sequence (yn) ⊂ R2 such that
∥yn∥ → 0 (so d(yn, 0) → 0) and whose elements are not colinear with x. Then we know that
x+ yn and x are not colinear either and therefore d(x+ yn, x) = ∥x+ yn∥+ ∥x∥ → 2∥x∥ ≠ 0.

b) For any n0 ∈ {0, 1, 2, . . . } and a > 0 consider the function

fn0,a(x) = af(x− n0)



where f(x) = max{0, 1− |x|}. Then λfn0,a = fn0,λa, for any λ > 0, and

d(fn0,a, 0) =
∞∑
n=1

2−n pn(fn0,a)

1 + pn(fn0,a)
=

∞∑
n=n0∨1

2−n a

1 + a
=

1

2(n0∨1)−1
· ϕ(a)

where n0 ∨ 1 = max{n0, 1} and ϕ(a) = a/(1 + a). To compute d(f, 0) and d(g, 0) note that
f = f0,1 and g = f2,100.

Next, for 0 < a < b, let us consider the function

ha,b =
1

2
f0,a +

1

2
f2,b = f0,a/2 + f2,b/2.

Because a < b we get p1(ha,b) = a/2 and pn(ha,b) = b/2 for n ≥ 2. Therefore

d(ha,b, 0) =
1

2
ϕ
(
a/2

)
+

1

2
ϕ
(
b/2

)
.

Since h = h1,100 we can immediately obtain d(h, 0).
Note for the remark that B(0, 1

2
) is not convex that in a topological vector space, the closure

of a convex set is convex.


